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Abstract—Artifacts can result when reconstructing a dynamic
image sequence from inconsistent, as well as insufficient and trun-
cated, cone beam single photon emission computed tomography
(SPECT) projection data acquired by a slowly rotating gantry. The
artifacts can lead to biases in kinetic model parameters estimated
from time-activity curves generated by overlaying volumes of in-
terest on the images. However, the biases in time-activity curve esti-
mates and subsequent kinetic parameter estimates can be reduced
significantly by first modeling the spatial and temporal distribu-
tion of the radiopharmaceutical throughout the projected field of
view, and then estimating the time-activity curves directly from the
projections. This approach is potentially useful for clinical SPECT
studies involving slowly rotating gantries, particularly those using
a single-detector system or body contouring orbits with a multide-
tector system.

We have implemented computationally efficient methods for
fully four-dimensional (4-D) direct estimation of spatiotemporal
distributions from dynamic SPECT projection data. Temporal
B-splines providing various orders of temporal continuity, as well
as various time samplings, were used to model the time-activity
curves for segmented blood pool and tissue volumes in simu-
lated cone beam and parallel beam cardiac data acquisitions.
Least-squares estimates of time-activity curves were obtained
quickly using a workstation. Given faithful spatial modeling,
accurate curve estimates were obtained using cubic, quadratic, or
linear B-splines and a relatively rapid time sampling during initial
tracer uptake. From these curves, kinetic parameters were esti-
mated accurately for noiseless data and with some bias for noisy
data. A preliminary study of spatial segmentation errors showed
that spatial model mismatch adversely affected quantitative
accuracy, but also resulted in structured errors (projected model
versus raw data) that were easily detected in our simulations.
This suggests iterative refinement of the spatial model to reduce
structured errors as an area of future research.

Index Terms—Dynamic single photon emission computed to-
mography (SPECT), fully four-dimensional (4-D) reconstruction,
kinetic parameter estimation.
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I. INTRODUCTION

T HE estimation of time-activity curves and kinetic model
parameters directly from projection data is potentially

useful for clinical dynamic single photon emission computed
tomography (SPECT) studies, particularly in those clinics that
have only single-detector systems and, thus, are not able to
perform rapid tomographic acquisitions. Even with a three-de-
tector system, a patient study that uses body contouring orbits
can take 45–60 s to obtain one full tomographic acquisition.
Because the radiopharmaceutical distribution changes while
the SPECT gantry rotates, projections at different angles come
from different tracer distributions. A dynamic image sequence
reconstructed from the inconsistent projections acquired by a
slowly rotating gantry can contain artifacts that lead to biases
in kinetic parameters estimated from time-activity curves gen-
erated by overlaying regions of interest on the images. If cone
beam collimators are used and the focal point of the collimators
always remains in a particular image plane, additional artifacts
can develop in other image planes reconstructed using insuffi-
cient projection samples [1]. If the projection samples truncate
the patient’s body, this can also result in additional image
artifacts. To overcome these sources of bias in conventional
image-based dynamic data analysis, we and others have been
investigating the estimation of time-activity curves and kinetic
model parameters directly from dynamic SPECT projection
data by modeling the spatial and temporal distribution of the
radiopharmaceutical throughout the projected field of view [2].

Building on research by Carson [3] and by Formiconi [4]
into direct time-activity curve estimation for regions of interest,
we have used simulated data to show that unbiased kinetic
parameter estimates for one-compartment models can be
obtained directly from parallel beam and cone beam SPECT
projections, given the blood input function and the proper
segmentation of volumes encompassing the projected field of
view [5]–[7]. These simulations systematically incorporated
physical effects, such as attenuation (Table I), and led to the
development of methods that were used to analyze a dynamic

Tc-teboroxime patient study [8]. For this patient study, the
blood input function was estimated directly from the projec-
tions, and spatial models for the left ventricular myocardium,
blood pool, liver, and background tissue were determined
by automatically segmenting a dynamic volumetric image
sequence reconstructed from the inconsistent projection data.

In related work, Chiaoet al. [9], [10] have jointly estimated
spatial boundaries for myocardial regions of interest and kinetic
parameters for one-compartment models from simulated single-
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TABLE I
SUMMARY OF PROJECTIONGEOMETRIES, PHYSICAL MODELING, AND COMPUTATIONAL COMPLEXITY FOR OURPREVIOUSWORK [5]–[8] AND THIS WORK. THE

ABBREVIATIONS FOR THEGEOMETRIESARE SSP, SINGLE-SLICE PARALLEL BEAM; MSP, MULTISLICE PARALLEL BEAM; AND C, CONE BEAM. IN SECTION II
OF THIS WORK, THE NUMBER OF PROJECTIONSAMPLES IS DENOTED BY THE PRODUCT OFFACTORS, IJK , AND THE NUMBER OF

LINEAR PARAMETERS ISDENOTED BY THE PRODUCT OFFACTORS,MN

slice transaxial positron emission tomography (PET) projec-
tions, using a blood input function that was estimated from the
data. In addition to these methods based on segmented regions
and volumes, a number of researchers have reconstructed single-
slice and multislice parametric images from SPECT and PET
data for a variety of kinetic models [11]–[16].

In our previous work, we formulated a nonlinear estimation
problem in which a set of linear parameters was estimated using
least squares, given iteratively estimated values for the non-
linear washout parameters for one-compartment kinetic models
[5]–[7]. As discussed in Section II and summarized in Table I,
the computational resources required for the straightforward
solution of the embedded linear least-squares subproblem grow
linearly with the number of SPECT projection measurements
and are nontrivial by today’s standards for typical patient
datasets. In particular, the memory required to analyze a
dynamic Tc-teboroxime patient study necessitated the
use of a Cray J90 at the National Energy Research Scientific
Computing (NERSC) Center [8]. To make matters worse, the
computational requirements for the straightforward solution
increase quadratically with the number of linear parameters.
Thus, a more computationally efficient solution is needed to
perform more detailed spatiotemporal modeling and to develop
further our direct kinetic parameter estimation methods, using
currently available computers.

In this work the primary new development, which we re-
port in Section II, is a computationally efficient method that
extends Formiconi’s least-squares algorithm [4] so that fully
four-dimensional (4-D) direct spatiotemporal distribution esti-
mation from projections can be performed quickly on a work-
station with a modest amount of memory. This method is used
with simulated data in Section III to reconstruct time-activity
curves for segmented volumes encompassing the projected
field of view. This method can be applied to projection data
acquired using any collimator or orbit geometry, provided that
the data yield a preliminary image reconstruction that can be
used to segment the activity distribution within the projected
field of view.

The secondary result, which we report in Section III, is
a preliminary study of the biases that result from modeling
various orders of temporal continuity and using various time
samplings when estimating time-activity curves directly from
dynamic cone beam and parallel beam SPECT projection data.
The effects of spatial segmentation errors are also studied. In
Section III-A, piecewise cubic, quadratic, linear, and constant
B-splines [17] are used to model the time-activity curves for
the blood input, three myocardial volumes of interest, liver,
and background tissue in simulated data. Attenuation and
geometric point response are modeled, but scatter is not. Seg-
mented volumes encompassing the projected field of view are
modeled to contain spatially uniform activity concentrations.
In Section III-B, a Monte Carlo simulation is used to study the
effects of noisy projections on kinetic parameter estimates for
one-compartment models obtained from the spline time-activity
curves for the blood input function and the myocardial and
liver volumes. This “semidirect” approach, in which compart-
mental modeling is done subsequent to direct time-activity
curve estimation, complements our earlier work, in which
compartmental model parameters were estimated directly from
projection data [5]–[8]. In Section III-C, the effects of failing
to segment myocardial defects and inaccurately localizing the
myocardial walls are studied with simulated data.

The methodology presented in Section III builds on the work
of Chenet al. [18], in which a spline fit to the blood input func-
tion and kinetic parameters for a compartmental model were
jointly estimated from time-activity curves generated by over-
laying regions of interest on a simulated temporal sequence of
reconstructed PET images. Nicholset al. [19] have also used
splines to model the time course of activity in volume elements
(voxels) reconstructed from dynamic list mode PET data.

II. COMPUTATIONALLY EFFICIENT ESTIMATION

OF SPATIOTEMPORAL DISTRIBUTIONS DIRECTLY

FROM PROJECTIONS

Time-varying activity concentrations within volumes of in-
terest encompassing the projected field of view can be modeled
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by selecting a set of temporal basis functions capable of repre-
senting typical time variations and having desired smoothness
properties. For example, to fit the blood input function, Chen
et al. [18] used five piecewise polynomial spline functions de-
fined over four contiguous time segments. The segments were
determined by varying their endpoints in a prescribed fashion
and using the set that yielded the smallest weighted sum of
squared errors, averaged over 100 simulated data sets. To model
the time course of activity in voxels reconstructed from dy-
namic list mode PET data, Nicholset al. [19] first calculated
the temporal histogram for the all of the data. Then, segment
endpoints for cubic B-splines were defined by selecting a set
that yielded approximately equal arc lengths along the resulting
time-activity curve. In the simulations in Section III, we use 16
B-splines spanning 15 time segments having geometrically in-
creasing length. The order of the splines and the length of the
initial time segment are varied in a prescribed fashion, and the
errors in the time-activity curve estimates and the subsequent
kinetic model parameter estimates are compared.

Similarly, the spatially nonuniform activity concentration
within a particular volume can be modeled by selecting an
appropriate set of spatial basis functions defined within the
volume. For example, to analyze a Tc-teboroxime patient
study, we used indicator functions for the left ventricular my-
ocardium, blood pool, liver, and background tissue [8]. These
were determined automatically by applying a 4-D edge detec-
tion operator to the dynamic image sequence reconstructed
from the inconsistent projection data. In the simulations in
Section III, we use indicator functions for the known anatomy
of a mathematical phantom.

Given a set of temporal basis functions and sets of spatial
basis functions for the volumes, coefficients for the resulting
spatiotemporal basis functions can be estimated directly from
the projections using the following generalization of Formi-
coni’s algorithm, which was developed for temporally static
distributions [4].

The projection of the th spatial basis function along rayat
angle is denoted by , and the integral of theth temporal
basis function during the time interval associated with angle
of rotation is denoted by . The projection equations can be
expressed as

(1)

where the are the modeled projections, the are the
linear coefficients associated with the time integrals of the pro-
jections of the spatiotemporal basis functions,is the number
of spatial basis functions, and is the number of temporal basis
functions. The criterion that is minimized by varying the linear
coefficients associated with the time integrals of the pro-
jections of the spatiotemporal basis functions is the weighted
sum of squares function

(2)

where the are the measured projections, the are
weighting factors, is the number of projection rays per angle,

is the number of angles per rotation, andis the number of
rotations. Typically, the weighting factors are either unity for
an unweighted fit or the estimated variances of the projections
for a weighted fit.

Equations (1) and (2) can be rewritten in matrix form as

(3)

and

(4)

respectively, where is an element column vector whose
th element is , is an

matrix whose th
element is , is an element column vector whose

th element is , is an element column
vector whose th element is ,
and is an diagonal matrix whose

th diagonal element is . The criterion
is minimized by the vector of spatiotemporal basis function

coefficients

(5)

The covariance matrix for the coefficientsis

(6)

where is the covariance matrix for the measured pro-
jections. Given an estimate of , estimates of the statis-
tical uncertainties of the coefficientsare the square roots of
the diagonal elements of the covariance matrix given by (6). In
general, the errors in the coefficients are correlated and the co-
variance matrix given by (6) has nonzero elements off the diag-
onal.

Storing the entire matrix and calculating the symmetric ma-
trix using straightforward matrix multiplication is com-
putationally inefficient. For example, about 3.7 million projec-
tion samples result from a 15-min dynamic SPECT study, such
as that simulated in Section III-A, in which data are acquired for
64 transverse axial rays per angle ( ),
angles per rotation, and one rotation per minute ( )
(Table I). Fully 4-D direct spatiotemporal distribution estima-
tion using 96 basis functions composed from spatial
and temporal basis functions, such as these used in
the simulations described in Section III-A, involves a matrix
containing million elements (Table I). For an
unweighted least-squares reconstruction of the spatiotemporal
basis function coefficients(i.e., for an identity matrix), cal-
culating the symmetric matrix using straightforward ma-
trix multiplication requires billion
multiply-and-add operations, given (Table I). This computa-
tional burden is nontrivial for current workstation-class com-
puters and grows worse quickly as either the numberof spa-
tial basis functions or the number of temporal basis functions
increases.
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The burden of storing the matrix can be reduced signif-
icantly by storing instead the spatial basis projection factors

and the temporal basis integral factors and calculating
the elements of as needed. For , this re-
duces memory usage by a factor of about . For the example
above with , this
requires storage of only million factors and

thousand factors and reduces memory usage
by a factor of about 230.

For an unweighted least-squares reconstruction of the spa-
tiotemporal basis function coefficients(i.e., for an identity
matrix), the symmetric matrix can be cal-
culated more efficiently as follows. Denoting the

th element of by , we
have

(7)

Rearranging the summations yields

(8)

where the factors and denote the inner products
and , respectively.

The number of factors is , the number of
factors is , and the number of fac-

tors is . It takes multiply-and-add operations
to calculate each factor and multiply-and-add opera-
tions to calculate each factor. Given the and
factors, it takes multiply-and-adds to calculate each of the

factors. Thus, the can be calculated using just
multiply-and-

adds. For and , this reduces the number of
operations by a factor of about . For the example above
with , this com-
putationally efficient calculation of requires storage of
about 19 000 and factors and about six million mul-
tiply-and-add operations, which is a factor of about 2800 less
than that required for straightforward matrix multiplication. For
the simulations described in Section III-A, this computation-
ally efficient calculation took about 2.2 s on a 194-MHz MIPS
R10000-based Silicon Graphics workstation.

Having addressed the major issues of storingand calcu-
lating , the next computational hurdle is calculating .
This can be done in a relatively straightforward manner using

multiply-and-add operations, given the and
factors. The system of equations can then

be solved efficiently for the spatiotemporal basis function coef-
ficients using the Cholesky decomposition of [20].

An estimate of the covariance matrix for the unweighted
least-squares estimates[(6)] can be calculated in the following
computationally efficient manner. From this covariance matrix,

the covariance between integrated segments of the spline
models for the time-activity curves for the blood input function
and a tissue uptake function can be estimated, which may be
useful for obtaining more accurate compartmental parameter
estimates via a weighted least-squares fit [21]. In Section III-B,
however, an unweighted least-squares fit is performed.

Given an estimate of the covariance matrix for the mea-
sured projections and substituting the identity matrix forin
(6), we obtain

(9)

Inverting the symmetric matrix, is straightfor-
ward, given its Cholesky decomposition. Taking the measured
projections to be independent Poisson random variables, an esti-
mate of their covariance matrix is the diagonal
matrix having the estimated projection vector along
the diagonal. Denoting the

th element of the symmetric matrix
by , we have

(10)

where is the th element of
the estimated projection vector. Rearranging the summations
yields

(11)

where the factor denotes the weighted inner product

.
The number of factors is , and

the number of factors is . Given
the , it takes multiply operations and add operations
to calculate each factor. Given the factors, it
takes multiplies and adds to calculate each of the

factors. Thus, the can be calculated using
just multiply operations
and half that number of add operations. Compared with the
computationally efficient calculation of , this calculation
of requires about times more multiply-and-adds
and about times more memory, given . For the case in
which is the diagonal matrix having the estimated projection
vector along the diagonal, can be calculated using

multiply-and-add operations, which is about
times more multiply-and-adds than is needed

to calculate . Thus, given the calculation time for
of about 2.2 s on a 194-MHz MIPS R10000-based Silicon
Graphics workstation and rotations, such as for the
simulations described in Section III-A, calculation of
should take about 1 min, given. For spatial basis
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Fig. 1. Compartmental model for Tc-teboroxime in the myocardium.
B(t) is the blood input function,Q (t) is the tracer in tissue volumem, and
k andk are the rate constants for uptake and washout, respectively.

functions and temporal basis functions, calculation of
should take about 3 min.
For a weighted least-squares reconstruction of the spatiotem-

poral basis function coefficients [i.e., for
in (5) and (6)], calculating takes the same amount of
computation as calculating . Thus, for dynamic SPECT
projection data acquired with a relatively small number of rota-
tions , it appears that with these methods, a workstation with
a modest amount of memory can be used to perform a weighted
least-squares reconstruction of the spatiotemporal basis func-
tion coefficients , as well as to obtain an estimate of the covari-
ance matrix for the coefficients, in a reasonable amount of time.
These methods are easily parallelized, and additional savings in
computation can be realized by taking advantage of the sparsity
of nonzero spatial basis projection factors and nonzero tem-
poral basis integral factors .

III. COMPUTERSIMULATIONS

The Mathematical Cardiac Torso (MCAT) phantom [22], de-
veloped by the University of North Carolina Medical Imaging
Research Laboratory, was used in simulations to evaluate the
ability to estimate spatiotemporal distributions directly from dy-
namic cone beam and parallel beam SPECT projections using
unweighted least squares. In addition, kinetic parameters for
one-compartment models (Fig. 1) were estimated from the re-
sulting spatiotemporal distributions, and a preliminary study of
the effects of spatial segmentation errors was performed. The
MCAT emission phantom [Fig. 2(a)] was composed of 128 con-
tiguous 1.75-mm thick slices and contained three myocardial
volumes of interest (normal myocardium, septal defect, and lat-
eral defect), blood pool, liver, and background tissue. These six
volumes did not overlap. The myocardial defects were defined
as the intersection of 3-cm diameter spheres with the septal and
lateral walls of the left ventricle. Cone beam and parallel beam
projections were attenuated using the corresponding MCAT at-
tenuation phantom [Fig. 2(b)]. Single-slice versions of these
phantoms were used in our previous work [7].

The simulated time-activity curves for the six emission vol-
umes are shown in Fig. 3. These are the same curves that were
used for the single-slice simulation in our previous work [7].
The time-activity curves for the three myocardial volumes of in-
terest and the liver were generated by using the blood pool curve
as the input to one-compartment models having kinetics cor-
responding to those of teboroxime [23]–[25]. The background
tissue activity was proportional to the blood pool activity.

(a)

(b)

Fig. 2. Transverse cross sections through (a) the MCAT emission phantom and
(b) the MCAT attenuation phantom. The truncation of data resulting from the
use of cone beam collimators is depicted in (a).

Fig. 3. Simulated time-activity curves for the volumes shown in Fig. 2(a).

The simulated 15-min data acquisition consisted of 64 trans-
verse 32 axial rays per angle ( ), angles per
rotation, and one rotation per minute ( ) of a single-de-
tector system. The projection bins were 7 mm7 mm at the
detector for both the cone beam and parallel beam geometries,
and the detector was 30 cm from the center of the field of view.
The collimators had a hole diameter of 2 mm, a length of 4 cm,
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(a) (b)

(c) (d)

Fig. 4. Examples of piecewise (a) cubic, (b) quadratic, (c) linear, and (d) constant B-spline basis functions used to model time-activity curves. Sixteen splines
were used to span 15 time segments having geometrically increasing length. The thirteenth spline is shown as a solid curve. The initial time segment length for the
splines shown here is 10 s.

and were offset 1 cm from the detector. The cone beam collima-
tors had a focal length of 70 cm, which resulted in truncation of
the data [Fig. 2(a)]. The parallel beam data were not truncated.
Attenuation and geometric point response were modeled using
a ray-driven projector with line length weighting [26]. Scatter
was not modeled.

A. Spatiotemporal Distribution Estimates

The spatial basis projection factors were defined by for-
ward projecting each of the six known emission volumes com-
posing the MCAT phantom [Fig. 2(a)]. Each emission volume
was modeled to contain spatially uniform activity (i.e., each
volume was represented by a spatial indicator function), which
yielded sets of spatial basis projection factors.

The temporal basis integral factors were defined by
integrating splines spanning 15 time segments having
geometrically increasing length (Fig. 4). Piecewise cubic,

quadratic, linear, and constant B-splines were used with initial
time segment lengths ranging between 2.5 and 60 s (Table II).
The shorter initial time segment lengths provided a higher
density of temporal spline basis functions at the beginning
of the simulated acquisition, when the activity concentrations
were changing most rapidly (Fig. 3). The 60-s initial time
segment length provided basis functions spaced uniformly in
time. The cubic, quadratic, and linear B-splines allow modeling
of curves that are continuous through their second, first, and
zeroth derivative, respectively.

The computational benefits of factoring the matrixinto the
spatial basis projection factors and the temporal basis in-
tegral factors were evident in the simulation. Rather than
storing its more than 350 million elements, about 1.5 million

and factors were stored instead. The number of mul-
tiply-and-adds used to calculate was reduced from over
17 billion to less than six million. A set of time-activity curves
was estimated directly from the 3.7 million simulated projec-
tion samples in about 2.3 min on a 194-MHz MIPS R10000-



440 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000

TABLE II
TEMPORAL SAMPLINGS USED IN THE SIMULATIONS IN SECTION III-A. G IVEN AN INITIAL TIME SEGMENT LENGTH, A SCALING FACTOR WAS CALCULATED AND

USED TOGENERATE A SEQUENCE OF15 TIME SEGMENTSHAVING GEOMETRICALLY INCREASINGLENGTH AND SPANNING A TOTAL OF 15 MIN

(a) (b)

(c) (d)

Fig. 5. Normalized rms modeling errors for time-activity curves estimated directly from noiseless cone beam projections, using piecewise (a) cubic, (b) quadratic,
(c) linear, and (d) constant B-spline basis functions (e.g., Fig. 4) and initial time segment lengths ranging between 2.5 and 60 s (Table II).

based Silicon Graphics workstation. The calculations of
and took about 2.2 s and 2.2 min, respectively.

Figs. 5 and 6 depict the root mean square (rms) differences be-
tween the simulated time-activity curves and the spline curves

estimated directly from noiseless projections, normalized by the
rms values of the simulated curves and expressed as percent-
ages. The temporal spline modeling errors were largest for the
septal and lateral defects, which had relatively small spatial sup-
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(a) (b)

(c) (d)

Fig. 6. Same quantities as in Fig. 5, for parallel beam projections.

ports [Fig. 2(a)] and low-activity concentrations (Fig. 3). In-
termediate errors resulted for the blood pool and background,
which had larger spatial supports but quickly decaying activity
concentrations. The errors were smallest for the normal my-
ocardium and liver, which had larger spatial supports and high-
activity concentrations throughout the simulated data acquisi-
tion. The errors tended to increase as the length of the initial
time segment for the splines increased.

In most cases, the temporal spline modeling errors for the
three myocardial volumes of interest and the blood pool were
smaller for the cone beam geometry than for the parallel beam
geometry, because of the increased relative sensitivity to those
volumes provided by the cone beam sampling. Errors for
the background tissue were comparable for both geometries,
whereas in most cases, the errors for the liver were larger for
the cone beam geometry. For the cone beam geometry and
the relatively rapid initial sampling provided by using initial
time segment lengths of 2.5, 5, or 10 s, the errors for all six
volumes ranged between 0.020% and 3.8%, 0.022% and 1.7%,
0.090% and 6.2%, and 1.6% and 64% for the cubic, quadratic,
linear, and constant B-splines, respectively (Fig. 5). The corre-
sponding ranges of errors for the parallel beam geometry were
0.020%–4.9%, 0.022%–2.7%, 0.089%–6.8%, and 1.6%–62%

(Fig. 6). For the cone beam geometry and the uniform time
sampling provided by using an initial time segment length
of 60 s, the errors ranged between 0.45% and 50%, 0.48%
and 53%, 0.65% and 60%, and 4.0% and 110% for the cubic,
quadratic, linear, and constant B-splines, respectively. The
corresponding ranges of errors for the parallel beam geometry
were 0.37%–69%, 0.41%–73%, 0.58%–83%, and 4.0%–140%.

B. Kinetic Parameter Estimates

Of interest is how the temporal spline modeling errors bias the
estimates of kinetic parameters obtained from the directly esti-
mated time-activity curves. To study this, we used the program
RFIT [27]–[29] to fit one-compartment kinetic models to the
directly estimated time-activity curves for the three myocardial
volumes of interest and the liver, using the directly estimated
blood pool curve as the input function. The background tissue
activity was modeled to be proportional to the blood pool ac-
tivity, and its amplitude was also estimated.

For the one-compartment kinetic model (Fig. 1), the uptake
in tissue volume is

(12)
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TABLE III
KINETIC PARAMETERS OBTAINED FROM TIME-ACTIVITY CURVES ESTIMATED DIRECTLY FROM NOISELESSCONE BEAM PROJECTIONSUSING B-SPLINES OF

VARIOUS ORDER AND VARIOUS INITIAL TIME SEGMENT LENGTHS. UNITS FOR UPTAKE k AND WASHOUT k ARE MIN . VALUES FOR

THE DIMENSIONLESSVASCULAR FRACTION f AND THE BACKGROUND AMPLITUDE g ARE NOT SHOWN. VALUES THAT DIFFERED

FROM THE SIMULATED VALUE BY �10%ARE SHOWN IN BOLDFACE TYPE

where is the blood input function, is the uptake pa-
rameter, and is the washout parameter. Total activity in the
tissue is given by

(13)

where is the fraction of vasculature in the tissue. To fit one-
compartment models for the normal myocardium, septal defect,

lateral defect, and liver (denoted by indexes , 2, 3, and 4,
respectively), RFIT varies the parameters, , and to
minimize the unweighted sum of squares function

(14)
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TABLE IV
SAME QUANTITIES AS IN Table III, FOR PARALLEL BEAM PROJECTIONS. VALUES THAT DIFFERED FROM THESIMULATED VALUE BY �10%

ARE SHOWN IN BOLDFACE TYPE

where the are given by (5), is the integral of
the th temporal basis function during the time in-
terval in which projection data are ac-
quired at angle of rotation , is the convolution

, and is derived from the
directly estimated blood pool time-activity curve (denoted
by index ) as follows. Given the set of time inte-
grals, , of

the directly estimated blood pool curve, RFIT models
as a piecewise linear function that interpolates zero at time

; the value at time ,

for and ; and the value
at time .

The amplitude of the background tissue (denoted by index
) is estimated by minimizing the unweighted sum of

squares function

(15)

Tables III and IV show the kinetic parameter estimates ob-
tained from the spline models for time-activity curves estimated
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(a) (b)

(c) (d)

Fig. 7. First of 100 noisy cone beam realizations: time-activity curves for (a) the blood pool, (b) the normal myocardium, (c) the septal defect, and (d) the lateral
defect, estimated using quadratic B-splines and an initial time segment length of 10 s [Fig. 4(b)]. Samples of the simulated curves (Fig. 3) are shown as points.
The solid and dotted curves were estimated from noiseless and noisy projections, respectively. The dashed curves in (b)–(d) are the kinetic model fits to the noisy
curves. The fitted kinetic parameters are listed in column (c) of Table V.

directly from noiseless projections. The biases in the uptake pa-
rameters and the washout parameters were particularly
small when using quadratic B-splines and initial time segment
lengths of 2.5, 5, or 10 s. For these three time samplings, the
biases (calculated as the absolute value of the difference be-
tween the simulated and estimated values, normalized by the
simulated value and expressed as a percentage) ranged between
0.0% and 1.0% for the cone beam geometry (Table III) and 0.0%
and 1.4% for the parallel beam geometry (Table IV). For cubic
B-splines, the biases were comparable, except for the case of the
lateral defect and an initial time segment length of 10 s, which
had larger bias. For linear B-splines, the biases were compa-
rable for the normal myocardium and the liver, and they were
larger for the defects. Overall, the biases for the cubic and linear
B-splines ranged between 0.0% and 4.4% and 0.0% and 6.6%,
respectively, for the cone beam geometry and initial time seg-
ment lengths of 2.5, 5, or 10 s. For the parallel beam geometry,
the biases ranged between 0.0% and 5.4% and 0.0% and 9.4%,
respectively.

To study the effects of noisy projections on kinetic parameter
estimates obtained from spline time-activity curves, 100 real-

izations of projections having Poisson noise were generated for
the cone beam and parallel beam geometries. The amplitude of
the simulated blood input function was adjusted so that about 10
million events were detected using the cone beam collimators.
With this same blood input function, about 6.4 million events
were detected using the parallel beam collimators. This number
of total detected events was selected to be less, on a slice by slice
basis, than the total of 4.8 million events that were detected in
the 11 7.12-mm thick slices analyzed in a Tc-teboroxime pa-
tient study [8]. Quadratic B-splines and an initial time segment
length of 10 s were used to model the time-activity curves. A
two-tailed -test [30] was used to assess the biases in the sample
means of the kinetic parameter estimates.

Figs. 7 and 8 show the time-activity curves estimated for the
blood pool and the three myocardial volumes of interest, for the
first noisy realization of cone beam and parallel beam data, re-
spectively. For both the cone beam and parallel beam geome-
tries, the differences between the spline time-activity curves es-
timated directly from noiseless and noisy projections were rel-
atively small, for the blood pool and the normal myocardium.
For the septal and lateral defects, the differences between the
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(a) (b)

(c) (d)

Fig. 8. Same curves as in Fig. 7 for parallel beam projections. The fitted kinetic parameters are listed in column (c) of Table VI.

spline curves estimated directly from noiseless and noisy pro-
jections were relatively large. Noise in the spline curve coeffi-
cients generated extended excursions (dotted lines) above and
below the noiseless spline curves (solid lines). The curves asso-
ciated with the one-compartment kinetic model fits to the noisy
spline curves provided smoother approximations (dashed lines)
to the noiseless spline curves. In all cases, the noiseless spline
curves provided relatively good fits to the samples of the simu-
lated curves.

Summaries of the results for all 100 noisy realizations are
presented in Tables V and VI for the cone beam and parallel
beam geometries. For the cone beam geometry (Table V), the
sample means [column (d)] of the uptake parametersand
the washout parameters for the normal myocardium and
the liver did not differ significantly from the simulated values
( ). The sample standard deviations [column (e)] ranged
between 0.5% and 20%. The sample means of the uptake and
washout parameters for the septal and lateral defects were sig-
nificantly different from the simulated values ( ). The
differences between the sample means and the simulated values
for the defects ranged between 4.8% and 16%. The sample stan-
dard deviations ranged between 22% and 42%.

For the parallel beam geometry (Table VI), the sample
means [column (d)] of the uptake parameters for the

normal myocardium and the liver did not differ significantly
from the simulated values ( ). The sample means of
the washout parameters were significantly different from
the simulated values ( ), although the difference was
only 0.7% for the normal myocardium. The difference for
the liver washout was 10%. The sample standard deviations
[column (e)] ranged between 0.9% and 40%. The sample
means of the uptake and washout parameters for the septal and
lateral defects were significantly different from the simulated
values ( ). The differences between the sample means
and the simulated values for the defects ranged between 11%
and 39%. The sample standard deviations ranged between
40% and 140%.

C. Effects of Spatial Segmentation Errors

Having demonstrated that direct time-activity curve estimates
and subsequent kinetic parameter estimates are robust with re-
spect to the temporal B-spline basis function order and the ini-
tial time sampling, given noiseless data and faithful modeling of
the spatial distribution of activity and physical effects, we study
now the effects of spatial segmentation errors.

In practice, we expect to base the spatial segmentation on
static functional images obtained by summing the late time
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TABLE V
KINETIC PARAMETERSOBTAINED FROM TIME-ACTIVITY CURVESESTIMATED DIRECTLY FROM CONE BEAM PROJECTIONS USINGQUADRATIC B-SPLINES AND AN

INITIAL TIME SEGMENT LENGTH OF10 s [FIG. 4(b)]: (a) SIMULATED VALUES; (b) VALUES FROM NOISELESSPROJECTIONS; (c) VALUES FROM THEFIRST OF100
NOISY REALIZATIONS; (d) SAMPLE MEANS, AND (e) SAMPLE STANDARD DEVIATIONS FOR THE100 NOISY REALIZATIONS. SAMPLE MEANS THAT WERE

SIGNIFICANTLY DIFFERENT FROM THESIMULATED VALUES (i.e.,P < 0:05 FOR A TWO-TAILED t-TEST) ARE LABELED WITH ASTERISKS

TABLE VI
SAME QUANTITIES AS IN TABLE V, FORPARALLEL BEAM PROJECTIONS. SAMPLE MEANS THAT WERESIGNIFICANTLY DIFFERENT FROM THESIMULATED VALUES

(i.e.,P < 0:05 FOR A TWO-TAILED t-TEST) ARE LABELED WITH ASTERISKS

frames of the dynamic SPECT study, anatomical images
obtained from a transmission scan, and any other images of the
patient that may be available (possibly from other modalities,
such as X-ray computed tomography). We have developed and
applied automated segmentation methods [31], [8], which are
being refined and validated as part of our ongoing research.

Even with a perfect segmentation of anatomy, nonuniform
activity distributions within individual organs must still be
modeled. We consider first the case in which a perfect anatom-
ical segmentation is available, but there is a nonuniform activity
distribution in the myocardium caused by defects. We then
perform a preliminary investigation into the errors resulting
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(a)

(b) (c)

(d) (e)

Fig. 9. Effects of failure to segment myocardial defects. The underestimation of (a) time-activity curves estimated from noiseless data with no modeling of defects;
summed residuals for noisy data and (b) no modeling and (c) faithful modeling of defects; (d) summed noiseless projections and, (e) summed noiseless anterior
projections for myocardium with defects. The underestimation of myocardial activity seen in (a) results in spatial structure in the summed residuals corresponds
to the myocardium in (d), (e). In (b)–(d), the summation is over all 120 angles for each of the 15 rotations, whereas in (e), the summation is over one angle per
rotation. The increased noise levels in the lower portions of (b), (c) are because of the relatively high-activity concentration in the liver.

from inaccurate localization of the myocardial walls for a
defect-free heart.

1) Failure to Segment Myocardial Defects:Using quadratic
B-splines and an initial time segment length of 10 s, time-ac-
tivity curves were estimated from noiseless simulated cone
beam data generated using the MCAT phantom having defects
in the septal and lateral walls of the left ventricular myocardium
[Fig. 2(a)]. However, the myocardial defects were not included
in the spatial segmentation used for estimating the time-activity
curves, and the activity distribution was assumed instead to be
uniform throughout the entire myocardium.

Because of this failure to segment the myocardial defects, the
time-activity curve estimated for the myocardium was system-

atically low [Fig. 9(a)] and had an rms error of 4.9%, compared
with the error of 0.091% achieved using the faithful spatial seg-
mentation [Fig. 5(b)]. The rms error for the blood pool curve
increased from 0.48% to 1.8%.

Using these time-activity curves, the estimates of the myocar-
dial uptake and washout parameters were min
and min , respectively, compared with the un-
biased estimates min and min
obtained from the curves estimated using the faithful spatial seg-
mentation (Table III).

Despite these relatively small errors in quantitation, spatial
structure was evident in the residuals for the modeled projec-
tions, even for simulated noisy projection data containing 10



448 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000

million detected events [Fig. 9(b)]. Thus, it may be possible
in practice to detect spatial model mismatch resulting from the
failure to segment small myocardial defects, as well as to re-
fine the segmentation iteratively in an effort to reduce the spatial
structure in the residuals for the modeled projections.

2) Inaccurate Localization of the Myocardial Walls:Using
quadratic B-splines and an initial time segment length of 10 s,
time-activity curves were estimated from noiseless simulated
cone beam data generated using the MCAT phantom with a de-
fect-free myocardium. Spatial model mismatches were induced
by either dilating or eroding the endocardial wall, or dilating or
eroding the epicardial wall. The wall location was displaced by
about 2.5 mm in each case by applying three-dimensional (3-D)
gray-scale dilation or erosion operators [32] as appropriate to
voxel maps of the indicator functions for the blood pool, my-
ocardium, and background tissue, before forward projecting the
volumes to calculate the spatial basis projection factors.

The rms errors for the time-activity curves estimated using
these incorrect spatial segmentations ranged between 15% and
23% for the myocardium and 2.8% and 30% for the blood
pool. The kinetic model parameters obtained from these curves
ranged between 0.537 and 0.961 minfor the uptake and
0.051 and 0.288 min for the washout , compared with
the unbiased estimates min and
min obtained from curves estimated using the faithful spatial
segmentation. In each case, spatial structure was evident in
the residuals for the modeled projections for simulated noisy
projection data containing 10 million detected events (Fig. 10).

Thus, it appears that systematic errors in the gross segmen-
tation of anatomy may have a larger effect on quantitation than
does the failure to account for small nonuniformities in the ac-
tivity distributions within the individual organs. Further study
is needed to assess the accuracy with which the spatial segmen-
tation can be performed in practice. As was the case with the
failure to segment small myocardial defects, it may be possible
in practice to detect spatial model mismatch resulting from gross
myocardial segmentation errors, as well as to refine the segmen-
tation iteratively in an effort to reduce the spatial structure in the
residuals for the modeled projections.

IV. DISCUSSION

The combination of gantry motion and the time-variation of
the radiopharmaceutical distribution being imaged results in in-
consistent dynamic SPECT projection data sets. In addition, the
use of cone beam collimators can result in insufficient, as well as
truncated, projection samples. Conventional kinetic model pa-
rameter estimation from time-activity curves generated by over-
laying volumes of interest on images reconstructed from these
projection data results in biases. The biases in the time-activity
curve estimates and the subsequent kinetic model parameter es-
timates can be reduced significantly by estimating the time-ac-
tivity curves directly from the projections. Implementation of
this strategy requires a spatial and temporal model of the ra-
diopharmaceutical distribution throughout the projected field of
view.

Computational issues associated with fully 4-D direct esti-
mation of spatiotemporal distributions from dynamic SPECT

(a)

(b)

(c)

(d)

Fig. 10. Effects of inaccurate localization of the myocardial walls: summed
residuals for noisy dat and (a) dilated endocardium, (b) eroded endocardium, (c)
dilated epicardium, and (d) eroded epicardium. In (a)–(d), the summation is over
all 120 angles for each of the 15 rotations. The increased noise levels in the lower
portions of (a)–(d) are because of the relatively high-activity concentration in the
liver.

projection data have been addressed, so that least-squares es-
timates of time-activity curves can be obtained quickly and ac-
curately using a workstation with a modest amount of memory.
Temporal B-splines were used to model the time-activity curves
for the blood pool and tissue volumes in simulated cone beam
and parallel beam cardiac data acquisitions. For noiseless data,
there were only minor differences between the curve models
estimated from the cone beam and the parallel beam data, as
well as minor differences between subsequent kinetic model
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parameter estimates. The direct time-activity curve estimates
and subsequent kinetic parameter estimates were robust with re-
spect to the temporal B-spline basis function order and the ini-
tial time sampling, given noiseless data and faithful modeling
of the spatial distribution of activity and physical effects. For
both the cone beam and parallel beam geometries, rms mod-
eling errors for the time-activity curves were less than 7% when
using cubic, quadratic, or linear splines with initial time seg-
ment lengths of 2.5, 5, or 10 s. Errors in uptake and washout
parameters for one-compartment kinetic models obtained from
these spline curves were less than 10%.

For small (3-cm diameter) myocardial defect regions
exhibiting reduced uptake and accelerated washout, biased
estimates of kinetic parameters for one-compartment models
were obtained for noisy data using quadratic B-splines and
an initial time sampling of 10 s. The uptake and washout
parameter estimates obtained from noisy cone beam data had
less bias (4.8%–16%) and variance (22%–42%) than did those
obtained from noisy parallel beam data (bias of 11%–39%;
variance of 40%–140%). This was presumably because of the
increased sensitivity of the cone beam collimators and their
increased resolution at the center of tomograph, near which the
defects were imaged.

What remains to be investigated in more detail are the
effects of the B-spline order and the initial time sampling
on kinetic parameters obtained from time-activity curves
estimated directly from noisy projection data, as well as the
impact of errors in modeling the spatial distribution of activity
and physical effects. For most of our simulations, we have
assumed that we have a perfect segmentation of a piecewise
uniform activity distribution, faithful models for attenuation
and geometric point response, and that there is no scatter.
Clearly, quantitative accuracy will suffer in practice, when we
have only approximate models for the spatial distribution of
activity (as in Section III-C) and physical effects.

Further study is needed to assess the accuracy with which the
spatial segmentation can be performed in practice. Even with
a perfect segmentation of anatomy, nonuniform activity distri-
butions within individual organs must still be modeled. For the
case in which the activities are modeled to be uniform within
the individual volumes of the segmentation, this requires sub-
dividing the segmentation into smaller volumes. A second ap-
proach is to model nonuniform activities within the larger vol-
umes by selecting sets of spatial basis functions defined within
the larger volumes (e.g., spherical harmonics defined within the
left ventricular myocardium). Our future research in this area
will focus on the second approach, used in conjunction with
adaptive refinement of the volume boundaries. Our future re-
search will also focus on improved modeling of physical effects,
particularly attenuation and scatter.

Although accurate, precise quantitation is the ultimate goal,
inaccuracy and imprecision can be tolerated so long as we can
discriminate between healthy and diseased tissue. For example,
although our noisy data simulations yielded biased estimates of
uptake and washout parameters for the small myocardial defect
regions, the resulting kinetics were significantly different from
the kinetics obtained for the normal myocardium. Given esti-
mates of time-activity curves or kinetic parameters for two vol-

umes of interest, as well as estimates of the uncertainties and
correlations of the quantities and a measure of the goodness of
fit of the overall spatiotemporal model, we are at least in a po-
sition to make an objective comparison that can supplement a
subjective evaluation of the data.

The estimation of time-activity curves directly from projec-
tion data appears to be potentially useful for clinical SPECT
studies involving slowly rotating gantries, particularly those
that use a single-detector system or body contouring orbits with
a multidetector system. The computationally efficient method-
ology presented in Section II facilitates continued research in
this area. The algorithm developed in Section II can also be
used to solve quickly the linear least-squares subproblem em-
bedded in the nonlinear estimation problem that we formulated
in [5]–[7], thereby facilitating future research into estimating
kinetic parameters directly from projection data. This includes
the joint estimation of a temporal model for the blood input
function and kinetic parameters for compartmental models
directly from projection data, as well as the parameterization of
spatially nonuniform activity concentrations within segmented
volumes encompassing the projected field of view.
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